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A new minimum zone method for straightness error analysis is proposed in
this article. Based on the criteria for the minimum zone solution and strict
rules for data exchange, a simple and rapid algorithm, called the control line
rotation scheme, is developed for the straightness analysis of planar lines.
Extended waorks on the error analysis of spatial lines by the least parallelepi-
ped enclosure are also described. Some examples are given in terms of
the minimum zone and least-squares. Finally, this easy-to-use method is
illustrated by an example that demonstrates that, for a planar line, the mini-

mum zone solution can even be found without the use of a computer.
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Introduction

The term “straightness error” is generally used to
refer to many aspects of engineering quality, such
as workpiece straightness, motion straightness, etc.
In order to assess this quality, engineering mea-
surements along a particular reference line using
appropriate techniques are generally made. The in-
terpretation of the measured data has been speci-
fied using many different standards, such as BS
308: part 3: “geometrical tolerance’' and ANSI
Y14.5M.? These specifications are all based on the
minimum zone concept appearing in ISO/R1101,%
which specifies the form errors in a general scope.
It states that an ideal geometrical feature must be
established from the actual measurements such
that the maximum deviation between the ideal and
the actual measurement concerned is the least pos-
sible value. The peak-to-valley distance of the devia-
tion data from the ideal geometrical feature thus
established is taken to represent the form error. The
orientation of the ideal feature can be regarded as
the alignment error in setting the reference axis
with respect to the measured axis.

Although the least-squares method,* due to its
simplicity in computation and the uniqueness of the
solution provided, is most widely used in industry
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for determining straightness, it provides only an
approximate solution that does not guarantee the
minimum zone value. Therefore, during the past
decade, much research has been devoted to finding
the minimum zone solutions for straightness error
and other form errors using various methods. Some
researchers applied the numerical methods of lin-
ear programming, such as the Monte Carlo method,
the simplex search and spiral search used by Mur-
thy and Abdin,® the revised simplex search with
dual problem used by Chetwynd,® the minimax ap-
proximation algorithm proposed by Fukuda and
Shimokohbe,” and the simplex search technique
adopted by Shunmugam? for the comparison of lin-
ear and normal deviations of straightness errors
(where the deviation is taken perpendicular to the
ideal line). Most of these works can be extended
to determine the minimum zone solutions of other
form errors, such as flatness, roundness, etc. An-
other type of approach has been to find the enclos-
ing polygon for the minimum zone solution, such
as the eigen-polygon method proposed by Hong
and Fan,? the convex polygon method presented by
Lai and Wang,'® and the convex hall theory given
by Traband et al."’ These methods are more or less
similarin their computational conception, which dy-
namically shows the meaning of each search step
from the distribution of the data points. A new algo-
rithm, the MINMAX method proposed by Fan and
Burdekin,'? uses the concept of the rotations of en-
closing lines with respect to a particular contact
point at each data exchange step. This technique
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reduces the separation of the enclosing lines step
by step until the minimum zone is found. The con-
cept is comprehensive in both the physical and en-
gineering senses in regard to the geometrical form
of the investigated data.

The methods mentioned above generally pro-
ceed initially with the random selection of data
points and then follow with an iterative data ex-
change procedure. A longer computation time is
naturally required by this kind of approach in order
to reach the final minimum zone condition. Burde-
kin and Pahk' in their revision of the MINMAX
method, called the enclose tilt technique, use the
least-squares result as the initial condition for the
analysis of the flatness error. This method, while
providing an efficient method for reaching the mini-
mum zone solution, deals with all the measured
points, the so-called full field, during each data ex-
change process. This process can be improved by
screening out unwanted data points, which makes
the mathematical model simpler and the computa-
tion time even shorter.

We must recognize, in the first place, that all
the algorithms so far developed for the minimum
zone solution of straightness error can guarantee
an exact and unique solution of the minimum zone
value, which must be smaller than the least-squares
value. The computation times will be different de-
pending on the complexity of the mathematical
model that each algorithm uses. From an engi-
neering point of view, in practice, the ability to un-
derstand the physical meaning of the algorithm is
more important than the computation time of that
algorithm, because the computation of each algo-
rithm is fast, even using a personal computer. In
reality, some algorithms are indeed difficult to un-
derstand because they are purely numerical analy-
ses. Therefore, the simpler and clearer the algo-
rithm, the more readily it will be accepted by an
inspector who needs to know the straightness error
from measured data. Practically, the best algorithm
should provide not only the simplest model for anal-
ysis, but should require the least computational use
of the computer. The development of such an algo-
rithm is the main objective of this work.

This article presents a new minimum zone
method for the straightness analysis of any planar
line or spatial line investigated. This method mod-
ifies Burdekin’s method™ and is applied to
straightness analysis by rotations of the enclosing
lines in “halffield” only. The data exchange scheme
starts with a 1-1 model, where one control point is
on one control line and another control point is on
the other control line, based on the least-squares
result. It then continues with a 2-1 model, where
two control points are on one control line and the
third control point is on the other control line, using
the strict rule of the control line rotation scheme
(CLRS), which is developed based on the criterion
of the minimum zone solution. With only afew steps
of data exchange in 2-1 model iteration, the mini-
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Figure 1 Minimum zone
straightness error

condition of the

mum zone solution can be easily obtained. In
addition, because most investigated lines have
straightness errors in two directions, i.e., vertical
and horizontal in space, being spatial lines, the in-
terpretation of the straightness error of a spatial
line is also proposed according to the definition
appearing in the ISO standard.?

Experimental tests on optical rails were con-
ducted with an optical instrument capable of dual
axis readings. Some examples are given including
both planar lines and spatial lines. A handy method
for planar line analysis is also illustrated without
the use of a computer.

Straightness analysis of planar lines
Minimum zone criteria

The criteria for the minimum zone solution of
straightness error have already been verified and
adopted for use in numerous studies as indicated
above.57'2"® Two conditions must be met in the
final stages:

1. At least three points must be in contact with
the two enclosing lines which are parallel.

2. These three points must lie on the enclosing
lines in an upper-lower-upper sequence or a
lower-upper-lower sequence.

Figure 1 illustrates the geometrical relationship of
this minimum zone status. The distance between
any two such enclosing lines defines the minimum
zone of the straightness error. The contact points
described here are called the control points and the
corresponding enclosing lines are called the control
lines for the purposes of this article. The mathemati-
cal models used to find this solution are described
in the following sections.

Mathematical models

1-1 Model. Before searching for a best-fit line, one
from which for a given set of data points the greatest
deviations are at the minimum distance, it is best
to find the least-squares line as the initial condition
of the search, because in most cases it is close to
the best-fit line.

Let the equation of the least-squares line be

Y=aX+b (1
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Figure 2 Construction of the 1-1 model from the
least-squares line
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Figure 3 CLRS rule in half-field search.
(A) Lower-upper condition.
(B) Upper-lower condition

where a and b are coefficients that can be deter-
mined by the least-squares concept and variational
principle. The deviation 8Y;, or residual, of the
straightness data from the least-squares line can
then be defined as

§Y,=Y,—aX, —b fori=1,2,....,.N (2)

where N denotes the total number of data points.
The highest of the data points with respect to this
least-squares line is now defined as the upper con-
trol point, and the lowest point is defined as the
lower control point. A 1-1 model is thus established
in such a way that an upper control line is generated
from the upper control point and a lower control
line from the lower control point, with both lines
being parallel to the least-squares line as shown in
Figure 2. These lines actually enclose all of the data
points.

2-1 Model. From the 1-1 model, two control points
in association with two control lines are obtained
by the least-squares method. In order to find the
third control point conforming to the minimum zone
solution, a strict rule of the CLRS is introduced.
Here, each control line will rotate with respect to its
corresponding control pointin the direction that will
most likely yield the result required by the second
criterion of the minimum zone solution as indicated
above. To meet this requirement, there are only two
possible situations, depending on the occurrence
of the control point and the determined direction
of rotation, as illustrated in Figure 3A and B. If the
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space between two such control lines is defined as
the full-field, during the rotation each control line
will eventually find its own first new contact point,
which must be located within the specified field.
In other words, only the points within a specified
quarter-field will be intersected by a particular con-
trol line for the determination of a new contact
point. This CLRS process deals with data points in
the half-field only, as shown by the shaded parts in
Figure 3. In the computer algorithm, those un-
wanted points can be screened out automatically
based on this concept. This should save half of the
computational time required by a full-field search.

During the rotation of a particular control line,
any point within the corresponding quarter-field
may become the first contact point, depending on
its position. Because each point within such a field
will correspond to a rotation angle of the control
line, the very first contact point must be the one
having the smallest angle with respect to the control
line. In the case of the search in the upper quarter-
field, as shown in Figure 4, if we let E,,, be the
deviation of the upper control point from the refer-
ence line, and £, be the deviation of point/ from the
reference line, the angle of rotation of the control
line from its initial position to the position as it con-
tacts with point / is

E,.,— E
| mu i 3
@#; = sin (—l_,- ) (3)

where L, is the distance from the upper control point
to point /. The very first contact point / within this
quarter-field will be found by

6, = minimum {6} (4)

Similarly, in the lower gquarter-field search, the
angle of rotation of the lower control line from its
initial position to the position where it contacts any
point j in this field is
— E
8= sin~' (——IEm L )

!

(5)

where £, = deviation from the lower control point
to the reference line, £, = deviation from point j to
the reference line, and L; = distance from the lower
control point to point /.

The first contact point J within this quarter-field
will be found by
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Figure4 CLRS search from 1-1 model to 2-1 model
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Figure 5 Four possible conditions requiring 2-1
model CLRS search

6, = minimum {6,}. (8)

Although each control line may generate its own
first point of contact during its own CLRS search,
only one contact point is eventually needed to form
the new 2-1 model. Therefore, selection between
points / and J will be judged by the smaller value
of #,and 8,. If the final condition at the current stage
meets the second criterion of the minimum zone
solution, the job is done. However, if it is not, any
of the four possible conditions shown in Figure 5
may occur. Further search procedures will be re-
quired.

CLRS search in the 2-1 model. When the three con-
trol points of the current 2-1 model do not meet the
minimum zone criterion, i.e., upper-lower-upper or
lower-upper-lower, one of the control points must
be discarded. It is obvious that this point must be
the outside one on the two-point side, as circled in
Figure 5. The remaining two control points will form
a 1-1 model again, and the rule of CLRS for a 1-1
model is now applicable, pushing that discarded
point inside the enclosing field. Equations (3) to (6)
will be applied again to generate a new 2-1 model.
This procedure will be iterated until the minimum
zone criterion is reached.

Algorithm of the computer program. The algorithm
of the computer program for the CLRS technique
can now be summarized as follows:

. Read the data (X;, Y)).

. Get the straightness data with the least-
squares method.

. Construct the 1-1 model.

. Apply CLRS rule to form a new 2-1 model.

. Iterate the 2-1 model until the second mini-
mum zone criterion is met.

6. Output the result.

bW R =

Straightness analysis of spatial lines

Under most circumstances, straightness measure-
ments address errors in two directions (vertical and
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horizontal) along a spatial line, such as the center
line of a shaft, the guideway of a machine table, the
moving axis of a linear stage, etc. These two error
directions are usually treated separately in two or-
thogonal planes. Straightness errors are then evalu-
ated and expressed in two directions.

An alternative interpretation of the straightness
error of a spatial line is presented here based on
the tolerance definition given by ISO/R1101.2 Ac-
cording to this definition, the straightness error of
any spatial line can be determined by two means:
(1) the section t, x t, of the smallest parallelepiped
that can contain all the points, as seen in Figure 6A,
or (2) the diameter of the smallest cylinder that can
contain all the points, as shown in Figure 6B. The
former problem can be solved by projecting data
points onto two orthogonal planes on which the
CLRS algorithm can be used. However, the latter
one has a different structure, which is rather a spa-
tial, or a cylindrical, problem. Because this is not
directly related to the exchange algorithm of CLRS,
this article addresses only the straightness error of
the spatial line by parallelepiped enclosure.

The definition of minimum parallelepiped com-
bines the results of two projected planar lines on
two orthogonal planes, with minimum zone errors
t,and t,, respectively, to form an enclosing parallel-
epiped for all straightness data measured in two
directions. Although this definition is clear, unfortu-
nately, to our knowledge no mathematical expres-
sion of the straightness error of a spatial line has
yet to be seen in any published report. Because
this error value must be dependent on the cross-
sectional size of the parallelepiped, in this article
this type of straightness error is defined as the diag-
onal length of the rectangular cross-section of this
parallelepiped, i.e.,

t,=Viti +t3 (7)

P
If we let a spatial line be directed in the X-direction
with its straightness error measured in Y- and Z-
directions simultaneously, the mean lines of the

?

T\ /7] %, o
b I,
It

{a) ()

Figure6 |SO definition of tolerance zone for spatial
lines.
(A) Minimum parallelepiped enclosure.
(B) Minimum cylinder enclosure
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Figure 7 Intersecting two mean planes obtained
from the projected lines to generate the parallelepi-
ped axis

minimum zone solutions on two projected planes
X-Y and X-Z, respectively, can be expressed as

onX—Yplane, Y=aX +b (8a)
onX—Zplane, Z=¢cX +d (8b)

where a, b, ¢, and d are coefficients that can be
found by the CLRS method. In fact, Equations (8a)
and (8b) can also be thought of as two plane equa-
tions in space, as shown in Figure 7. The inter-
secting line of these two planes represents the cen-
ter line of the minimum enclosing parallelepiped,
which can be expressed by the following form:

Y-b_z-d_X
a é 1

(9)

Having obtained this axis in space, all the measured
data can be referred to this center line and the level-
ing work can be performed to remove the alignment
error of the measuring axis with respect to the ob-
ject axis.

Examples

There are quite a few instruments available on the
market that have a capability for straightness mea-
surements of planar lines, such as the straightedge
with dial indicator, the laser interferometer, the
electronic level, and the taut wire with sensor. There
are also other instruments designed for the
straightness measurements of spatial lines, such as
the alignment telescope, the four-quadrant or dual-
axis photodiode with collimated laser, and the dual-
axis autocollimator.’ Experimental work can easily
be performed using appropriate equipment for any
object being investigated. Some of the results of
this type of work are presented below. The data
points used for each of these examples are listed
in the Appendix.
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CLRS method for planar lines

In Example 1the formal procedure for the minimum
zone search was performed with a personal com-
puter. The 1-1 model was first established from the
least-squares line. The two control points thus ob-
tained were points 6 and 9. Followed by only one
CLRS process with the rotation rule, the minimum
zone solution was readily obtained using three con-
trol points, 1, 6, and 9, as illustrated in Figure 8.
Example 2 is a set of points from Murthy and Abdin.?
Its straightness plot is given in Figure 9. Table 1
shows the results of these two examples in terms of
the least-squares and the minimum zone solutions.

An easy-to-use graphical CLRS method

The unique significance of the CLRS method when
compared with all the other existing methods* '3

CALIBRATION OF : X-MOTION  FOR ' Y-STAIGHTNESS ERROR
MACHINE : EXAMPLE 1 DATE INSPECTOR : FAN
STRAIGHTNESS PLOT (LEVEL DATUM)
)
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w2,
1
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-1 X.CM
°© 2 8 8 %
NT K
DEPARTMENT OF MECHHNICAL ENGINEERING | CALLI BEE?]ON

Figure 8 The minimum zone solution of example
1, the unleveled condition

Figure 9 The minimum zone solution of example
2, the leveled condition
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Table 1 Straightness errors of planar lines
Example 1 Example 2
Lsa CLRS LsQ CLRS
Coefficient
a 0.0373 0.06 0240 0.229
b 0.7727 -0.75 2.461 2.456
Error 5.882 55 0.913 0.880

LSQ, least-squares method; CLRS, minimum zone method.

is its strict rule of control line rotation. The least-
squares line is only a reference for the construction
of the 1-1 model. Because this method can effi-
ciently provide the optimum strategy for data ex-
change, this reference line can even be any other
line passing through the data points. The CLRS pro-
cess can also be performed without the computer.
Figure 10 illustrates a series of procedures per-
formed manually with a pair of triangles and a pen
on graph paper with respect to the data points given
in Example 1. Figure 10A shows a reference line
drawn by linking two end points, which is deemed
the simplest way to construct the reference line.

3 o FN, 3
5 B e
4 e -
_— -
3 , 2
2 o=
-~
: i
= = 3 10
A % 3 ; &
,2 =

(a)

oo oo <

=

/ X
(b)

Figure 10 Graphical CLRS approach on the graph
paper.
(A) CLRS search.
(B) Final result
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The corresponding control points (6,9) and control
lines(L,, L,) ofthe 1-1 model are determined accord-
ingly. Figure 10A also shows two control lines that
rotate around the corresponding control points in
the directions prescribed by the CLRS rule. This ro-
tation will result in two new contact points (3,10).
Having compared the angles of rotations (6,, 8,) of
these two control lines, the contact point corre-
sponding to the smaller angle (point 3} is thus se-
lected as the new control point for the new 2-1
model. A judgment in accordance with the second
criterion of the minimum zone solution is then
made. In this example, the CLRS is now completed
with the same result as in Figure 8 The minimum
zone error can then be evaluated either from the
diagram by approximation or by exact calculation
using a computer.

From our experience, in most cases only one
CLRS process is needed to reach the minimum zone
solution. On very few occasions will one or two
further CLRS processes be required to reach the
final solution.

Straightness error for spatial lines

Two optical rails were measured using a colli-
mated laser and a four-quadrant photodiode in
the laboratory. Their data points are used in Exam-
ples 3 and 4, respectively. Table 2 summarizes
the analyzed minimum zone results compared with
the least-squares solutions. A leveled three-dimen-
sional graphical view of Example 3 is shown in
Figure 11 where the spatial points are noted by
the symbol x and the projected points on two
orthogonal planes are given by dots. It is clearly
seen that on the X-Y plane the control points for
minimum zone solution are points 4, 7, and 10,
whereas on the X-Z plane there will be control
points 1, 4, and 8. The straightness error of this
spatial line can therefore be obtained by Equa-
tion (7).

Discussions and conclusions

This article proposes a concise and comprehensive
data exchange algorithm, the CLRS, for the mini-
mum zone solution of straightness error. It gives
a simple and clear concept to which not only the
minimum zone error can be guaranteed by the
straightness criterion, but can be modified to oper-
ate without the use of a computer.

Although this article deals with residuals only
in the normal to a nominal (instrument) direction,
these residuals can be easily corrected to the
normal to the reference line direction at the final
stage if anyone is interested. However, this is not
the major concern of this article, because the
difference is relatively small if we remember that
the errors are in microns and the step length of
measurement is on the order of centimeters or
inches.
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Table 2 Straightness errors of spatial lines

Example 3 Example 4
Lsa CLRS Lsa CLRS

Coefficient

a 0.765 0.783 —2.776E-04 —4.874E-04

b —0.945 —-1.75 —0.049 0.1035

c —0.925 —0.957 —3.011E-03 —2.528E-03

d —2.455 —2.413 0.4950 0.3849
Error

t1 7.036 6.5 0.656 0.6129

t2 15.236 14.286 0.868 0.7697

tp 15.695 0.9839

t1, x-y plane; 12, x-z plane; tp, parallelepiped enclosure.

As indicated in the Introduction, the comput-
ing time required by the error analysis of any
existing algorithm is less significant, because it
must be short enough in comparison with the
time consumed in the error measurements. The
CLRS method, therefore, only highlights its fea-
tures of simplicity (half-field search with a com-
mon equation), clarity (graphical explanation), and
on-site applicability (manual operation).

An extended work of the CLRS method has
been conducted to the minimum parallelepiped en-

Y 5

Figure 11 The leveled three-dimensional graphical
plot of example 3
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closure for spatial lines, and the new definition for
this application, t,, is proposed. However, the algo-
rithm of minimum cylinder enclosure for spatial
lines has not yet been found. This is regarded as a
complicated case which might be investigated in
different ways.
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Appendix: straightness data points

Example 1 Example 2

No. x(em) y(pum) No. X y
1 0 0 1 1 2.428
2 10 2 2 2 2.891
3 20 3 3 3 3.445
4 30 2 4 4 2.931
5 40 25 5 5 3.895
6 50 -1 6 6 4.196
7 60 2 7 7 4.497
8 70 5 8 8 4.662
9 80 6 9 9 4.545

10 90 3 10 10 4.303

Example 4

No. x(cm) y(mm) z(mm)
1 0 0.41 0
2 254 0 0.124
3 50.8 -0.108 0.205
4 76.2 -0.17 0.306
5 101.6 -0.112 0.352
6 127 —0.068 0.387
7 152.4 —0.05 0.326
8 177.8 -0.16 0.248
9 203.2 —0.302 0.256

10 228.6 —0.286 0.1

1 254 -0.22 —-0.068

12 279.4 -0.18 —0.262

13 304.8 —0.148 —0.558

14 330.2 -0.078 —0.74

15 355.6 -0.178 —-0.899

16 381 -0.22 —0.956

17 406.4 —0.272 —0.942

18 431.8 —0.334 —0.928

19 457.2 —0.266 —0.88

20 482.6 -0.126 —-0.98

21 508 0 —1.04

22 533.4 0.15 -0.83
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Example 3
No. x(cm) ylem) z{um)
1 0 -3 5
2 10 9 - 12
3 20 15 ~25
4 30 25 ~38
5 40 29 -40
6 50 36 ~48
7 €0 42 -5
8 70 51 -62
9 80 59 ~-74
10 90 72 -88
165



